Ultrafast Charge- and Energy-Transfer Dynamics in Conjugated Polymer: Cadmium Selenide Nanocrystal Blends
نویسندگان
چکیده
Hybrid nanocrystal-polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands (n-butylamine, oleic acid) as well as thermal annealing allows tuning of the polymer-nanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organic-nanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends.
منابع مشابه
Enhanced energy transfer in quasi-quaternary nanocrystal superlattices.
Quasi-quaternary nanocrystal superlattices are assembled by using exclusively core-shell particles as building blocks. The assemblies show an enhancement of energy-transfer from cadmium selenide-based core-shell quantum dots to gold-iron oxide core-shell nanocrystals compared to random mixtures of the same components.
متن کاملControl over exciton confinement versus separation in composite films of polyfluorene and CdSe nanocrystals
Composite films of polyfluorene derivative poly~9,9-di-~2-ethylhexyl!-fluorenyl-2,7-diyl! and cadmium selenide nanocrystals were investigated using photomodulation spectroscopy exciting only the nanocrystal phase. Efficient charge separation resulting in hole injection into the polymer was observed in films in which the nanocrystals had been stripped of surface trioctylphosphine oxide passivati...
متن کاملPhotophysical and structural characterisation of in situ formed quantum dots.
Conjugated polymer-semiconductor quantum dot (QD) composites are attracting increasing attention due to the complementary properties of the two classes of materials. We report a convenient method for in situ formation of QDs, and explore the conditions required for light emission of nanocomposite blends. In particular we explore the properties of nanocomposites of the blue emitting polymer poly...
متن کاملCharge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems
Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), whi...
متن کاملUltrafast Transient Spectroscopy of Polymer/Fullerene Blends for Organic Photovoltaic Applications
We measured the picoseconds (ps) transient dynamics of photoexcitations in blends of regio-regular poly(3-hexyl-thiophene) (RR-P3HT) (donors-D) and fullerene (PCBM) (acceptor-A) in an unprecedented broad spectral range of 0.25 to 2.5 eV. In D-A blends with maximum domain separation, such as RR-P3HT/PCBM, with (1.2:1) weight ratio having solar cell power conversion efficiency of ~4%, we found th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014